62,082 research outputs found

    When Does Relay Transmission Give a More Secure Connection in Wireless Ad Hoc Networks?

    Full text link
    Relay transmission can enhance coverage and throughput, while it can be vulnerable to eavesdropping attacks due to the additional transmission of the source message at the relay. Thus, whether or not one should use relay transmission for secure communication is an interesting and important problem. In this paper, we consider the transmission of a confidential message from a source to a destination in a decentralized wireless network in the presence of randomly distributed eavesdroppers. The source-destination pair can be potentially assisted by randomly distributed relays. For an arbitrary relay, we derive exact expressions of secure connection probability for both colluding and non-colluding eavesdroppers. We further obtain lower bound expressions on the secure connection probability, which are accurate when the eavesdropper density is small. By utilizing these lower bound expressions, we propose a relay selection strategy to improve the secure connection probability. By analytically comparing the secure connection probability for direct transmission and relay transmission, we address the important problem of whether or not to relay and discuss the condition for relay transmission in terms of the relay density and source-destination distance. These analytical results are accurate in the small eavesdropper density regime.Comment: Accepted for publication in IEEE Transactions On Information Forensics and Securit

    Tight Upper Bounds for Streett and Parity Complementation

    Get PDF
    Complementation of finite automata on infinite words is not only a fundamental problem in automata theory, but also serves as a cornerstone for solving numerous decision problems in mathematical logic, model-checking, program analysis and verification. For Streett complementation, a significant gap exists between the current lower bound 2Ω(nlgnk)2^{\Omega(n\lg nk)} and upper bound 2O(nklgnk)2^{O(nk\lg nk)}, where nn is the state size, kk is the number of Streett pairs, and kk can be as large as 2n2^{n}. Determining the complexity of Streett complementation has been an open question since the late '80s. In this paper show a complementation construction with upper bound 2O(nlgn+nklgk)2^{O(n \lg n+nk \lg k)} for k=O(n)k = O(n) and 2O(n2lgn)2^{O(n^{2} \lg n)} for k=ω(n)k = \omega(n), which matches well the lower bound obtained in \cite{CZ11a}. We also obtain a tight upper bound 2O(nlgn)2^{O(n \lg n)} for parity complementation.Comment: Corrected typos. 23 pages, 3 figures. To appear in the 20th Conference on Computer Science Logic (CSL 2011

    Visualization Techniques for Tongue Analysis in Traditional Chinese Medicine

    Get PDF
    Visual inspection of the tongue has been an important diagnostic method of Traditional Chinese Medicine (TCM). Clinic data have shown significant connections between various viscera cancers and abnormalities in the tongue and the tongue coating. Visual inspection of the tongue is simple and inexpensive, but the current practice in TCM is mainly experience-based and the quality of the visual inspection varies between individuals. The computerized inspection method provides quantitative models to evaluate color, texture and surface features on the tongue. In this paper, we investigate visualization techniques and processes to allow interactive data analysis with the aim to merge computerized measurements with human expert's diagnostic variables based on five-scale diagnostic conditions: Healthy (H), History Cancers (HC), History of Polyps (HP), Polyps (P) and Colon Cancer (C)

    Learning Multi-item Auctions with (or without) Samples

    Full text link
    We provide algorithms that learn simple auctions whose revenue is approximately optimal in multi-item multi-bidder settings, for a wide range of valuations including unit-demand, additive, constrained additive, XOS, and subadditive. We obtain our learning results in two settings. The first is the commonly studied setting where sample access to the bidders' distributions over valuations is given, for both regular distributions and arbitrary distributions with bounded support. Our algorithms require polynomially many samples in the number of items and bidders. The second is a more general max-min learning setting that we introduce, where we are given "approximate distributions," and we seek to compute an auction whose revenue is approximately optimal simultaneously for all "true distributions" that are close to the given ones. These results are more general in that they imply the sample-based results, and are also applicable in settings where we have no sample access to the underlying distributions but have estimated them indirectly via market research or by observation of previously run, potentially non-truthful auctions. Our results hold for valuation distributions satisfying the standard (and necessary) independence-across-items property. They also generalize and improve upon recent works, which have provided algorithms that learn approximately optimal auctions in more restricted settings with additive, subadditive and unit-demand valuations using sample access to distributions. We generalize these results to the complete unit-demand, additive, and XOS setting, to i.i.d. subadditive bidders, and to the max-min setting. Our results are enabled by new uniform convergence bounds for hypotheses classes under product measures. Our bounds result in exponential savings in sample complexity compared to bounds derived by bounding the VC dimension, and are of independent interest.Comment: Appears in FOCS 201

    KBGAN: Adversarial Learning for Knowledge Graph Embeddings

    Full text link
    We introduce KBGAN, an adversarial learning framework to improve the performances of a wide range of existing knowledge graph embedding models. Because knowledge graphs typically only contain positive facts, sampling useful negative training examples is a non-trivial task. Replacing the head or tail entity of a fact with a uniformly randomly selected entity is a conventional method for generating negative facts, but the majority of the generated negative facts can be easily discriminated from positive facts, and will contribute little towards the training. Inspired by generative adversarial networks (GANs), we use one knowledge graph embedding model as a negative sample generator to assist the training of our desired model, which acts as the discriminator in GANs. This framework is independent of the concrete form of generator and discriminator, and therefore can utilize a wide variety of knowledge graph embedding models as its building blocks. In experiments, we adversarially train two translation-based models, TransE and TransD, each with assistance from one of the two probability-based models, DistMult and ComplEx. We evaluate the performances of KBGAN on the link prediction task, using three knowledge base completion datasets: FB15k-237, WN18 and WN18RR. Experimental results show that adversarial training substantially improves the performances of target embedding models under various settings.Comment: To appear at NAACL HLT 201

    Standard sirens and dark sector with Gaussian process

    Full text link
    The gravitational waves from compact binary systems are viewed as a standard siren to probe the evolution of the universe. This paper summarizes the potential and ability to use the gravitational waves to constrain the cosmological parameters and the dark sector interaction in the Gaussian process methodology. After briefly introducing the method to reconstruct the dark sector interaction by the Gaussian process, the concept of standard sirens and the analysis of reconstructing the dark sector interaction with LISA are outlined. Furthermore, we estimate the constraint ability of the gravitational waves on cosmological parameters with ET. The numerical methods we use are Gaussian process and the Markov-Chain Monte-Carlo. Finally, we also forecast the improvements of the abilities to constrain the cosmological parameters with ET and LISA combined with the \it Planck.Comment: 10 pages, 8 figures, prepared for the proceedings of the International Conference on Gravitation : Joint Conference of ICGAC-XIII and IK1

    A systematic study of magnetic field in Relativistic Heavy-ion Collisions in the RHIC and LHC energy regions

    Get PDF
    The features of magnetic field in relativistic heavy-ion collisions are systematically studied by using a modified magnetic field model in this paper. The features of magnetic field distributions in the central point are studied in the RHIC and LHC energy regions. We also predict the feature of magnetic fields at LHC sNN\sqrt{s_{NN}}= 900, 2760 and 7000 GeV based on the detailed study at RHIC sNN\sqrt{s_{NN}} = 62.4, 130 and 200 GeV. The dependencies of the features of magnetic fields on the collision energies, centralities and collision time are systematically investigated, respectively.Comment: 8 pages, 7 figure
    corecore